УДК 616.15:612.089 ББК 54.11 Б-63

Савина Лидия Васильевна, доктор медицинских наук, профессор кафедра терапии №1 факультета повышения квалификации и переподготовки специалистов Кубанского государственного медиинского университета, т.:8(861)2527393;

Болотова Елена Валентиновна, доктор медицинских наук, доцент кафедра терапии №1 факультета повышения квалификации и переподготовки специалистов Кубанского государственного медиинского университета, т.:8(861)2527393, e-mail: bolotowa e@mail.ru;

Солдатенко Наталья Викторовна, заочный аспирант кафедры факультетской терапии Кубанского государственного медицинского университета, т.: 8 9615097932;

Шамраева Татьяна Федоровна, клинический ординатор кафедры терапии №1 факультета повышения квалификации и переподготовки специалистов Кубанского государственного медицинского университета.

БИОИНФОРМАЦИОННЫЕ ФУНКЦИИ СЫВОРОТКИ КРОВИ ЧЕЛОВЕКА

(рецензирована)

Изучено структурирование сыворотки крови в периоды различной геомагнитной активности и влияния экранирования от внешнего магнитного поля. Выявлена высокая информационная воспри-имчивость сыворотки крови к воздействию физических факторов окружающей среды.

Ключевые слова: сыворотка крови, биоинформационные функции.

Savina Lidia Vasiljevna, Doctor of Medicine, professor of the Department of Therapy № 1 of the Faculty of Training and Retraining, Kuban State Medical University, tel.: 8 (861) 2527393;

Bolotova Elena Valentinovna, Doctor of Medicine, associate professor of the Department of Therapy № 1 of the Faculty of Training and Retraining, Kuban State Medical University, tel.: 8 (861) 2527393; e-mail: bolotowa e@mail.ru;

Soldatenko Natalia Victorovna, post-graduate student of the Department of Faculty Therapy, Kuban State Medical University, tel.: 8 9615097932;

Shamraeva Tatyana Fedorovna, clinical therapist of the Department of Therapy N^{\circ} 1 of the Faculty of Training and Retraining, Kuban State Medical University.

BIOINFIORMATIC FUNCTIONS OF HUMAN BLOOD SERUM

The structuring of serum in periods of different geomagnetic activity and the impact of screening on the external magnetic field has been investigated. A high information susceptibility of serum to the effects of physical environmental factors has been revealed.

Keywords: serum, bioinformatic function.

Сыворотка крови (СК) — это динамичный метаболизирующий коллоид, главная составная часть которого — белок, находящийся в постоянно активном состоянии [1]. В состав СК входят также сложные биополимеры — липиды, полисахариды. Наиболее хорошо изучены глобулярные белки - альбумины и глобулины. Характер их взаимодействия с различными метаболитами определяется в значительной мере состоянием макроструктуры и конформационной гибкостью белковых молекул [4]. Это сообщает СК наиболее важные качества, превращая ее из сложного высокомолекулярного раствора многих веществ в специализированную биосистему по приему биохимических, электрокинетических, адаптационно-морфологических и других сигналов. СК участвует в процессах обработки, приема и хранения информационных сигналов различной природы [3]. Ее компоненты пространственно организованы [7].

Целью исследования явилось изучение структурирования СК в периоды различной геомагнитной активности и влияния экранирования от внешнего магнитного поля. Препараты готовили способом «открытая» и «закрытая» капля [5, 6].

Изучен процесс структурирования ксерогеля у 400 здоровых лиц (доноров) в зимний, весенний и летний периоды 2009 года. Полученные показатели сопоставлялись с показателями геомагниной активности (ГМА). Геомагнитная обстановка оценивалась по данным ИЗМИРАНА. Среднемесячные значения амплитуды магнитной возмущенности (Ак) соответствовали в феврале 19,3 \pm 0,16, в марте – 22,4 \pm 0,42, в мае – 19,5 \pm 0,54, в июне – 18,5 \pm 0,22. Спокойные дни соответствовали значению Ак <15. Максимум Ак в феврале колебался от 20 до 40, марте – от 22 до 41, апреле – от 22 до 64, мае –

от 20 до 35, июне – от 21 до 38. Из приведенных данных следует, что самая высокая активность наблюдалась в апреле. Низкая Ак варьировала от 8 до 12 и по количеству дней преобладала в июне.

Изучение структуры морфотипов ксерогелеграммы в соответствии дням высокой Ак выявило наличие радиально-лучистого каркаса (рис. 1а), в дни низкой Ак он проявлялся слабо, чаще в центре препарата наблюдалось круглое солевое пятно, периферия же была выполнена различно ориентированными разнокалиберными полигональными камерами (рис. 1б). Гелиогеофизический фактор – один из основных параметров среды, формирующий биотропный эффект. Главной «вынуждающей» силой для биологических автоколебательных систем является циклическое изменение уровня напряженности фоновых электромагнитных полей [2].

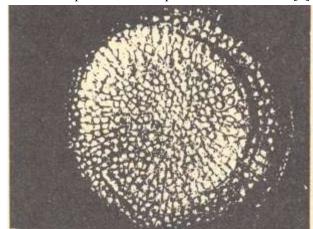


Рис. 1a. Структура ксерогелеграммы в соответствии дням высокой Ак

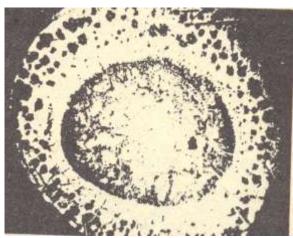


Рис. 1б. Структура ксерогелеграммы в соответствии дням низкой Ак

Изучено влияние экранирования от внешнего магнитного поля на структурирование ксерогеля СК 80 здоровых лиц в возрасте от 20 до 30 лет с I группой крови. Период исследования соответствовал весеннему сезону. Для получения ксерогеля капли СК высушивали способом «открытая» капля, а для получения кристаллограмм – способом «закрытая» капля.

После нанесения капель СК в количестве 2 мл, налитых в стеклянные ампулы, она помещалась на 24 часа в контейнер, изготовленный из двойного слоя пермаллоя. При непосредственном измерении статического коэффициента экранирования с помощью магнитометра (чувствительность которого 50 нТ) магнитное поле внутри камеры не обнаруживалось. По окончании сеанса экранирования СК высушивалась вышеуказанными способами. В контрольном опыте СК исследуемых лиц (20 человек) в количестве 2 мл помещалась в ампулы, изготовленные из стекла, и одновременно с экспериментом выдерживалась в них на протяжении 24 часов. Опыты велись в прохладном месте.

Общей закономерностью при изучении структуры исходного ксерогеля явилось наличие дискоидной матрицы, имеющей радиально-лучистый каркас, образованный трещинами дегидратации, петлеобразно завершенными по периферии в виде секторов. Данные кристаллограммы свидетельствовали о центростремительном варианте кристаллизации солей СК – растворенные золи наиболее интенсивно выпадали в центральном концентре и менее интенсивно – в срединном и периферическом. В соответствии с распределением солей по концентрам нами было выделено три микротипа кристаллизации – крупнозернистый, мелкозернистый и пилитовый. Морфологически каждый тип был представлен присущими ему агрегатами выкристаллизовавшихся солей. Крупнозернистому типу (центральный концентр) соответствовали разряженные розетки диаметром от 10 до 25 мкм, в центре которых наблюдались две взаимопересекающиеся сигмообразные фигуры, завершенные или полузавершенные. Мелкозернистому типу (средний концентр) соответствовали слоисто-параллельные агрегаты. Пилитовый тип (периферический концентр) был представлен порошковой массой, из которой формировались лучистые агрегаты.

Пребывание СК на экране из пермаллоя на протяжении 24 часов вызывало существенные изменения в структуре ксерогелеграмм и кристаллограмм. Так, матрица экранированного ксерогеля была представлена дискоидной конкрецией диаметром 6-7 мм радиально-лучистого строения, при этом значительно увеличивалось количество секторов по сравнению с исходными данными (рис. 2а). В поле зрения прослеживались многочисленные полигональные камеры, в центре которых присут-

ствовали сферические пустоты, нередко имеющие по своим окружностям спиралевидную очерченность

Микротипы кристаллизации солей также изменялись, преобладали мелкозернистый и пилитовый типы. Центральный и средний концентры были выполнены слоисто-концентрическими мелкозернистыми агрегатами от 5 до 15 мкм (рис. 2б). В периферическом концентре наблюдалась пилитовая равномерная запорошенность, отсутствовали лучистые агрегаты. При сравнительной оценке исходных ксерогелеграмм и кристаллограмм с данными контрольного опыта существенной разницы в структуре изучаемых препаратов найдено не было. Однако структурирование контрольных образцов по сравнению с экранированными значительно различалось.



Рис. 26. Мелкозернистый тип центрального и среднего концентра

Таким образом, проведенные нами исследования свидетельствуют о высокой информационной восприимчивости СК, внутренней среды организма человека, к воздействию физических факторов окружающей среды. Сыворотка крови – модель «in vitro», обладающая многоканальной связью с общим информационным полем Вселенной.

Литература:

- 1. Бернал Дж., Карлайл С.К. Поля охвата обобщенной кристаллографии // Кристаллография. 1968. Т.13, №5. С. 927-951.
- 2. Владимирский В.М. Солнечно-земные связи в биологии и явление «захвата» частоты // Проблемы косм. биологии. 1982. Т.46. С. 166-168.
- 3. Орехович В.Н. Химия, физико-химия и биологические свойства белков // Химические основы жизнедеятельности. М., 1962. С. 5-16.
- 4. Ройтруб Б.Л. Конформационные переходы в белках крови при различных функциональных состояниях нервной системы. Киев: Наукова думка, 1975. 264 с.
- 5. Способ исследования сывороточной системы крови: а. с. 1399681 / Савина Л.В., Туев А.В., Чирвинский Н.П. Открытие. 1988. №20.
 - 6. Способ диагностики атеросклероза: а. с. 1559262 / Савина Л.В., Туев А.В. Открытие. 1990. №15.
- 7. Савина Л.В. Кристаллоскопические структуры сыворотки крови здорового и больного человека. Краснодар, 1999. 96 с.