Спильник Елена Павловна, аспирант очной формы обучения кафедры технологии жиров, косметики и экспертизы товаров Института пищевых и перерабатывающих производств Кубанского государственного технологического университета, т.: 8(861)2752493;

Мартовщук Валерий Иванович, доктор технических наук, профессор, профессор кафедры технологии жиров, косметики и экспертизы товаров Кубанского государственного технологического университета, т.: 8(861)2752493;

Мартовицук Евгения Владимирована, кандидат технических наук, доцент, профессор кафедры технологии жиров, косметики и экспертизы товаров Кубанского государственного технологического университета, т.: 8(861)2752493;

Багалий Татьяна Михайловна, кандидат технических наук, заместитель директора испытательного центра масложировой продукции «Аналитик», т.: 8(861)2396716.

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ СОСТАВА НЕТРАДИЦИОННОГО РАСТИТЕЛЬНОГО СЫРЬЯ – ЖЕЛУДЕЙ

(рецензирована)

Цель исследования: исследование особенностей состава нетрадиционного растительного сырья – желудей.

Ключевые слова: нетрадиционное растительное сырье, желуди, химический состав, пищевая ценность.

Spilnik Elena Pavlovna, post graduate student of the Department of Technology of Fats, Cosmetics and Expertise of the Institute of Food processing industries, Kuban State Technological University, tel.: 8 (861) 2752493;

Martovschuk Valery Ivanovich, Doctor of Technological Sciences, professor, professor of the Department of Technology of Fats, Cosmetics and Expertise of the Kuban State Technological University, tel.: 8 (861) 2752493;

Martovschuk Eugene Vladimirovna, Candidate of Technical Sciences, associate professor, professor of the Department of Technology of Fats, Cosmetics and Expertise of the Kuban State Technological University, tel.: 8 (861) 2752493;

Bagaley Tatiana Michailovna, Candidate of Technical Sciences, deputy director of the test center of fat products "Analyst", tel.: 8 (861) 2396716.

RESEARCH OF FEATURES OF THE NONTRADITIONAL HERBAL MATERIAL - ACORNS (Reviewed)

The purpose of the research has been to study the features of non-traditional plant materials - acorns.

Keywords: alternative plant material, acorns, chemical composition, nutritional value.

Одним из приоритетных направлений Государственной политики индустриально развитых стран является обеспечение продовольственной безопасности и формирование системы здорового питания. Для реализации Государственной политики в области здорового питания населения России в южном регионе имеются большие возможности использования различных источников сырья, прежде всего растительного происхождения.

В качестве перспективных источников растительного сырья для создания биологически активных добавок, содержащих в своем составе комплекс физиологически функциональных ингредиентов, целесообразно использовать нетрадиционное растительное сырье, из которого большой интерес представляют плоды дуба — желуди, которые, по сути, представляют собой орехи [1].

Для изучения возможности применения этого сырья необходимо было изучить особенности его химического состава и пищевую ценность.

В таблице 1 приведен общий химический состав желудей.

Из приведенных данных видно, что в состав желудей входят белки (7-9 %), липиды (11-12 %), достаточно большое количество углеводов (14-16 %), в том числе крахмал (до 60% от общего содержания углеводов), и до 3% золы. Особо следует отметить наличие таких соединений, как биофлавоноид кверцитин, дубильные вещества, в том числе танины, представляющие собой физиологически ценные вещества, являющиеся природными антиоксидантами и вкусовыми компонентами [2].

Таблица 1 - Общий химический состав желудей

Наименование компонента	Содержание компонента
Массовая доля, %:	
влаги	60,0 – 66,0
белков	7,0 – 9,0
липидов	11,0 – 12,0
углеводов, в том числе:	14,0 – 16,0
крахмала	8,4 – 9,6
ЗОЛЫ	2,2-3,0
дубильных веществ, в том числе:	0,54 - 0,60
танины	0,48 - 0,52
биофлавоноидов (кверцетин)	0,03 - 0,06

Состав макро- и микроэлементов, содержащихся в желудях приведен в таблице 2. Таблица 2 - Состав макро- и микроэлементов желудей

	·
Наименование показателя	Значение показателя
Массовая доля макроэлементов, мг/100 г:	
натрий	17,96
калий	109,68
кальций	84,94
магний	28,34
фосфор	19,64
Массовая доля микроэлементов, мкг/100 г:	
железо	1942
цинк	1180
марганец	2100
медь	300

Как уже отмечали, исследования химического состава показали присутствие до 3% золы, что свидетельствует о присутствии в желудях макро- и микроэлементов.

Установлено, что преобладающими макроэлементами являются **калий**, **кальций и магний**, которые влияют на состояние сосудистой системы и сердца человека. *Калий* необходим для нормальной деятельности мягких тканей организма, желез внутренней секреции, капилляров, нервных клеток. Также он играет роль в поддержании функционирования клеточных стенок, нормализует сердечный ритм, повышает умственную активность и поддерживает энергетический уровень организма [2]. *Кальций*, наряду с пластической и структурной функциями, влияет на физиологические и биохимические процессы. Он необходим для нормального функционирования нервной системы, сократимости мышц, является активатором ряда ферментов и гормонов, а также важнейшим компонентом свертываемости крови [2]. *Магний* участвует в углеводном и фосфорном обмене, в синтезе белков. Обладает сосудорасширяющим действием. Принимает участие в построении костной ткани, оказывает успокаивающее действие нервной системы. Играет значительную роль в процессах свертываемости крови, регуляции работы кишечника [3].

В желудях также в значительных количествах содержатся фосфор и цинк. Известно, что эти минеральные вещества являются необходимыми для организма человека, поскольку активно участвуют в обмене веществ и являются структурными элементами костной и мышечной ткани человека. Так фосфор также активно участвует в формировании тканей мозга, входит в состав всех тканей и необходим для нормального функционирования нервной системы и сердца [2].

Цинк необходим для нормальной структуры ДНК, он входит в состав белков, которые регулируют перенос генетической информации. Является одним из самых сильных антиоксидантов. Необходим для обновления кожи, волос и ногтей [2]. Поскольку в желудях присутствуют белки, изучали их аминокислотный состав. Установлено, что в желудях преобладают такие незаменимые аминокислоты, как метионин+цистин, фенилаланин+тирозин и треонин, что обусловливает биологическую ценность сырья.

Полноценность растительного сырья также зависит от присутствия витаминов, состав которых приведен в таблице 3.

Таблица 3 - Состав витаминов желудей

Наименование витамина	Содержание витамина, мг/100 г
Тиамин (В ₁)	0,10-0,12
Рибофлавин (B ₂)	0,48 - 0,50
Витамин Е	0,04 - 0,06
Витамин С	51,20 - 53,18
Ниацин (РР)	1,50 - 1,57

Из анализа данных таблицы 3 следует, что в желудях в значительных количествах содержатся витамин С, витамин В₂ и витамин РР. Витамин С необходим для поддержания иммунитета, а также для образования и поддержания уровня коллагена — белка, содержащегося в соединительных тканях, принимает участие в обмене аминокислот, синтезе некоторых гормонов, стимулирует процесс кроветворения, улучшает защитную функцию печени [2]. Известно, что витамин В₂ участвует в процессах углеводного, белкового и жирового обмена, в поддержании нормальной зрительной функции глаз, а также для жизнедеятельности всех клеток и тканей. Регулирует превращения аминокислот и биосинтез белка (гемоглобина), стимулирует процесс роста [2].

Витамин РР участвует в окислительно-восстановительных реакциях, в процессе внутритканевого дыхания, выполняет ряд функций, связанных с синтезом ДНК и делением клеток [2].

Количество липидов в желудях составляет 11-12 %, учитывая это, изучали их жирнокислотный состав (таблица 4).

Из полученных данных видно, что в липидах желудей преобладают олеиновая (44,46-53,08%), линолевая(25,24-39,60%) и пальмитиновая(12,02-13,81%) кислоты. Такой жирнокислотный состав обеспечивает достаточную биологическую эффективность желудей как сырья для получения БАД.

Таким образом, проведенные исследования показали, что желуди являются ценным сырьевым источником для получения БАД. С технологической точки зрения возможно использование желудей в качестве заменителя муки, обогащающего хлебобулочные изделия липидами, белками, углеводами, биофлавоноидами в виде квертицина, дубильными веществами, макро- и микроэлементами, а также витаминами.

Наименование жирной кислоты	Содержание жирных кислот, % к общей сумме
Миристиновая $C_{14:0}$	0,02-0,03
Пальмитиновая $C_{16:0}$	12,02-13,81
Пальмитолеиновая $C_{16:1}$	0,10-0,12
Стеариновая $C_{18:0}$	1,72-2,46
Олеиновая $C_{18:1}$	44,46-53,08
Линолевая $C_{18:2}$	25,24-39,60
Линоленовая С _{18:3}	0,27-1,11
Арахиновая $C_{20:0}$	0,46-0,52
Эйкозеновая С _{20:1}	0,18-0,39
Бегеновая С22:0	0,12-0,14

Таблица 4 - Жирнокислотный состав липидов желудей

Литература:

- 1. Клинико-диагностический центр: URL: www.medeffect.ru
- 2. Пищевая химия / Нечаев А.П. [и др.]; под ред. А.П. Нечаева. СПб.: ГИОРД, 2001. 592 с.
- 3. Скурихина И.М. Химический состав пищевых продуктов: справочник. 2-е изд., перераб. и доп. М.: Агропромиздат, 1987. 224 с.

References:

- 1. Clinical and diagnostic center: URL: www.medeffect.ru
- 2. Food Chemistry / A.P. Nechaev [and oth.]; Ed. By A.P. Nechayev. St.Ptb.: Giord, 2001.592 p.
- 3. Skurikhina I.M. Chemical composition of foods: a guide. 2nd ed., rev. and add. M.: Agropromizdat, 1987. 224 p.